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Abstract

We study the interaction of incentives to free-ride on information acquisi-

tion and strategically delay irreversible investment in environments in which

multiple firms evaluate an investment opportunity. In our model, two firms

decide how quickly to privately obtain information about the profitability of a

project, and when (if ever) to publicly invest in it. Multiple equilibria exist,

differing with respect to how much information firms acquire as well as how

quickly they invest. The equilibrium which maximizes aggregate payoffs fea-

tures asymmetric play with distinct leader and follower roles when firms are

patient, but features symmetric play when firms are impatient and information

acquisition costs are sufficiently high.
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1 Introduction

In many economic settings, decision makers may strategically delay irreversible action

in order to learn from the actions of others. For instance, oil firms can delay drilling on
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leased tracts to learn from the drilling decisions of firms on nearby tracts,1 and venture

capitalists can delay investing in startups to learn from the funding decisions of other

investors.2 More generally, incentives for strategic delay arise whenever information

about payoffs is dispersed, opportunities are non-rival, and decision-makers may freely

time their actions.

Our starting point is the observation that in many applications, a decision maker’s

private information is the result of costly information-acquisition activities. For in-

stance, oil firms conduct seismic surveys to estimate the extent of oil deposits on a

tract, and venture capitalists perform due diligence to gauge the quality of a startup’s

product and management team. Strategic incentives then shape both how much infor-

mation is produced through private effort, as well as how much is aggregated through

public actions.

A key insight from the literature on experimentation in teams is that when infor-

mation acquisition is costly, decision makers tend to free-ride, or inefficiently reduce

their rate of information acquisition. We build on that insight by assuming, in a

departure from existing work, that learning is both private and imperfect, and that

decision-makers reveal what they know only by irreversible action. These features

create an incentive for players to strategically delay acting on good news in addi-

tion to, or instead of, free-riding on the acquisition of news. Our model provides a

tractable framework for studying the equilibrium interplay of incentives for free-riding

and strategic delay.

In our model, two firms have the opportunity to invest in a nonrival risky project.

Firms may dynamically exert variable costly effort, a process we call “prospecting”,

for the chance of receiving a binary signal which is informative about the project’s

value. Each firm can acquire at most one signal, and signals are conditionally i.i.d.

As a result, aggregating signals from multiple firms yields information about the

profitability of investment beyond what any one firm could learn. Any information a

firm acquires through prospecting is private but investment is public.

We show that there are exactly three perfect Bayesian equilibria of our model. In

1See Hendricks and Kovenock (1989) for a discussion of incentives for social learning in offshore
oil drilling and Hendricks and Porter (1996) for empirical evidence of strategic delay in this setting.

2Paul Graham, a prominent entrepreneur and venture capitalist, has discussed the importance
of social learning among venture capitalists: “The biggest component in most investors’ opinion of
you is the opinion of other investors... When one investor wants to invest in you, that makes other
investors want to, which makes others want to, and so on”(Graham 2013).
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the unique symmetric equilibrium, each firm prospects as intensively as possible until

a cutoff time, after which it abandons prospecting forever if it has not seen investment

by the other firm. If at any time before the cutoff a firm receives a positive signal, it

invests without delay. This equilibrium exhibits no free-riding or investment delay.

There are also two asymmetric “leader-follower” equilibria. In these equilibria, one

firm takes the role of a leader, prospecting until acquiring a signal and then investing

without delay if the signal is positive. Meanwhile the remaining firm follows the

leader by either free-riding on the leader’s prospecting efforts, delaying investment

after acquiring a signal, or both. The mix of the two behaviors depends on the cost

of prospecting: investment delay arises when costs are low, free-riding emerges when

costs are high, and for intermediate costs delay is followed by eventual free-riding.

In the low-cost regime, not only is there no free-riding, but the follower spends more

time prospecting than it would have in the symmetric equilibrium.

In contrast to existing models of free-riding and investment delay, neither equi-

librium generates unambiguously larger amounts of social learning. In general, the

symmetric equilibrium produces more information early on, while the leader-follower

equilibrium produces more at later times. As a result, either equilibrium can gener-

ate higher total payoffs, depending on model parameters. We show that when firms

are patient, the leader-follower equilibrium generates higher aggregate payoffs, while

when firms are impatient and prospecting costs are sufficiently high, the symmetric

equilibrium is superior.

The remainder of the paper is organized as follows. Section 1.1 surveys related

literature. Section 2 describes the model. Section 3 characterizes the set of perfect

Bayesian equilibria of the model. Section 4 compares payoffs across equilibria. Section

5 concludes.

1.1 Related literature

Our paper is most closely connected to models of collective experimentation, in par-

ticular Bonatti and Hörner (2011, 2017), Bolton and Harris (1999), Keller, Rady,

and Cripps (2005), Keller and Rady (2010, 2015), and Dong (2018).3 These papers

study environments in which effort simultaneously dictates both the production and

aggregation of information. This linkage is a key feature of the canonical bandit

3See Hörner and Skrzypacz (2017) for an excellent survey of this literature.
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experimentation framework, in which players learn by monitoring the returns to in-

crementally investing effort in a project. Our paper departs from this literature by

separating learning from the payoffs generated by a project. This separation allows us

to make learning completely private, with information aggregation instead associated

with a distinct decision to collect payoffs.

Our model builds most directly on on the work of Bonatti and Hörner (2011)

(hereafter BH), who study strategic experimentation with private effort and learn-

ing, in a setting where signals arrive via a Poisson good news process with perfectly

informative breakthroughs.4 A key dynamic in both their model and ours is a grad-

ual deterioration of each player’s beliefs due to continued inaction by another player,

which is taken as a negative signal about their private information. Methodolog-

ically, our model differs by modeling negative signals as arriving discretely rather

than continuously, simplifying equilibrium characterizations by avoiding belief diver-

gences following deviations from equilibrium effort. And conceptually, it differs by

assuming that good news is not perfectly revealing, creating a motivate for players

to delay investment once they have obtained a positive signal.

Several papers pursue related approaches to separating information production

and aggregation in collective experimentation. Heidhues, Rady, and Strack (2015)

finds that in a classic bandit model, outcomes improve when payoffs are private

and disclosed with delay via a cheap-talk communication channel. Our paper more

severely restricts possibilities for communication, generating distinctive welfare im-

plications from private learning. Guo and Roesler (2018) augment the model of BH

with discrete negative signals, which can be signaled by irreversibly dropping out of

the project. In their model these signals are perfectly revealing, so that delay in

dropping out is driven by free-riding rather than social-learning concerns.

Our paper is also related to models of investment timing. One set of papers

assume that players receive exogenous private signals of the state, either at time zero

or dynamically. Papers in this tradition include Chamley and Gale (1994), Gul and

Lundholm (1995), Chari and Kehoe (2004), Rosenberg, Solan, and Vieille (2007), and

Murto and Välimäki (2011, 2013). Aghamolla and Hashimoto (2020) endogenizes the

precision of a private signal received at the start of the game, but does not allow agents

4Formally, in their model breakthroughs are publicly observed and immediately accrue a common
payoff to all players. Because breakthroughs are perfectly informative, their results would not change
if breakthroughs were private and players publicly invested to collect a state-contingent payoff.
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to dynamically acquire information. A second strand of the literature abstracts from

private information about the project and instead assumes that investment generates

public signals of the project’s profitability. Papers in this tradition include Décamps

and Mariotti (2004), Fajgelbaum, Schaal, and Taschereau-Dumouchel (2017), and

Frick and Ishii (2020). Klein and Wagner (2019) spans the two sets of papers by

endowing players with time-zero private information and assuming that investment

generates further public information.

None of these papers feature a tradeoff between free-riding and investment delay,

a tension which plays a key role in our model. In addition, most of these papers

focus on symmetric play. One exception is Gul and Lundholm (1995), which finds

that asymmetric play reduces delay and raises aggregate payoffs. In contrast, our

analysis identifies a non-trivial tradeoff between the payoffs generated by symmetric

and asymmetric play, which can yield higher aggregate payoffs for either type of

equilibrium depending on model parameters.

Finally, our paper shares important features with work by Ali (2018) and Camp-

bell, Ederer, and Spinnewijn (2014). Ali (2018) endogenizes information acquisition

in a model where players invest in a pre-determined sequence. It can therefore be

viewed as a fixed-move-order analog to our exercise of endogenizing information acqui-

sition when players invest flexibly. Campbell, Ederer, and Spinnewijn (2014) studies

a team production problem in which production is private and separate from the de-

cision to disclose progress. This separation is analogous to the separation of learning

and information aggregation in our setting.

2 The model

Two firms have the opportunity to invest one unit of capital in a nonrival risky project

of unknown quality. The project has underlying type θ and is either Good (θ = G)

or Bad (θ = B). If θ = G, each unit of capital invested in the project generates

cashflows with a net present value of R, beginning at the time that unit of capital

is invested; if θ = B, the project generates no cashflows. We assume that R > 1,

so that each unit of capital invested in the project generates positive returns in the

Good state. Each firm is free to invest in the project at any time t ∈ R+. Firms

are risk-neutral with common discount rate r > 0. Capital is indivisible, investment

in the project is irreversible, and project outcomes are observed only by players who
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invest.5

Both firms begin with a common prior belief π0 ∈ (0, 1) that the project is Good.

Each firm i = 1, 2 can exert costly effort to privately search for an informative signal

about the project’s quality, an activity we will refer to as prospecting. The goal of

prospecting is to uncover a binary signal Si ∈ {H,L}, i.e., High or Low, which is

correlated with the state of the project: Pr(Si = H | θ = G) = qH and Pr(Si = L |
θ = B) = qL, with qH , qL ∈ (1/2, 1). Any prospecting that a firm undertakes, and any

signal that results, are observed only by the firm conducting the prospecting. Each

firm can obtain at most one signal, and firms observe conditionally i.i.d. signals.

Prospecting is a dynamic process unfolding in continuous time. Over every time

interval [t, t + dt], each firm i chooses a prospecting rate λit ≥ 0, which causes a

signal to arrive with probability λit dt while incurring an effort expense of C(λit) dt.

Following much of the literature on collective experimentation,6 we assume a linear

cost structure:

C(λ) =

cλ, λ ∈ [0, λ]

∞, λ ∈ (λ,∞)

for some constant marginal cost c > 0 and maximum prospecting rate λ, both of

which are symmetric across firms. Conditional on prospecting rates, signal arrival

times are independent across firms and independent of the state of the project.

Firms cannot observe each other’s signals or prospecting intensities, nor can they

observe whether another firm has received a signal or obtained a good outcome from

investment. There are also no communication channels between firms. However, all

investment decisions are public, introducing a channel for social learning.

2.1 Notation and assumptions

We will denote the posterior beliefs induced by one or more signals as follows: π+

and π++ are the posteriors induced by one and two High signals, respectively; π− and

π−− are the posteriors induced by one and two Low signals; and π+− is the posterior

induced by one High and one Low signal. (Exchangeability implies that posterior

beliefs are independent of the order of receipt of signals.) Given that High signals are

5A natural interpretation of the private observability of outcomes is that the project’s cashflows
are realized far in the future.

6See Keller, Rady, and Cripps (2005) and BH for classic examples of team experimentation
models assuming linear experimentation costs.
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more likely when the state is Good, and conversely for Low signals when the state is

Bad, π++ > π+ > π0, π+− > π− > π−−. Note that in general π+− 6= π0, except in the

special case when qH = qL.

Suppose that a firm receives a signal when its current beliefs that θ = G are µ ∈
[0, 1]. Then the total probability that the signal is High is h(µ) ≡ qHµ+(1−qL)(1−µ),

while the corresponding probability that the signal is Low is l(µ) ≡ 1 − h(µ). The

quantities h(µ) and l(µ) are the transition probabilities that a firm’s posterior belief

jumps up or down upon receiving a signal. Following acquisition of a signal, we

will write µ+ ≡ qHµ/h(µ) for the firm’s updated belief if the signal is High, and

µ− ≡ (1− qH)µ/l(µ) if the signal is low.

We impose several bounds on prospecting costs and the payoff of a Good project.

Assumption 1. 1/π+ < R < 1/π0.

Under this assumption, investment in the project is ex ante unprofitable, but

becomes profitable conditional on observation of a High signal.7

Assumption 2. R < 1/π+−.

This assumption ensures that learning another firm’s signal is useful even after

acquisition of a High signal, since an additional Low signal would push beliefs back be-

low the breakeven threshold. This assumption in conjunction with Assumption 1 rules

out perfectly informative good news, as such signals correspond to π+ = π+− = 1, in

which case no R can simultaneously satisfy the bounds in both assumptions. These

assumptions therefore distinguish our setting from classic experimentation models

like Keller, Rady, and Cripps (2005) and BH, where a single positive outcome is

definitive.

Assumption 3. c ≤ c ≡ h(π+)(π++R− 1)− (π+R− 1).

This assumption ensures that a second signal is at least potentially profitable to

acquire, in the sense that if it could be attained instantaneously, it would provide

enough information to be worth the cost. As with Assumption 2, this assumption

focuses our analysis on environments in which combining information from multiple

signals is strategically relevant. Note that Assumptions 1 and 2 ensure that c > 0.

7The case R < 1/π+ is uninteresting, as the unique equilibrium involves no prospecting and no
investment by either firm.
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2.2 Single-player benchmark

Consider a single firm prospecting and investing on its own, shutting down the social

learning channel of our model. The firm’s initial beliefs that the project is good will

be taken to be µ < 1/R. We will refer to this benchmark setting as autarky.

So long as the firm has acquired no signal, it learns nothing about the project and

its beliefs remain fixed at µ. An optimal prospecting strategy is therefore stationary.

This behavior differs from the cutoff strategies which are optimal when learning from

Poisson bandits, for instance as in BH. In Poisson bandit models, lack of arrival

of a signal is itself news about the underlying state, leading to belief updating. In

our model, by contrast, lack of signal acquisition does not signal anything, positive or

negative, about the true project state; no news truly is no news until a signal arrives.8

Once the firm has acquired a signal, no further information is available. It then faces

a simple static choice of whether or not to invest, which it resolves by comparing its

posterior beliefs to the investment threshold 1/R.

The optimal prospecting strategy depends on whether the firm’s initial beliefs µ

lie above a critical threshold, which we will denote πA and refer to as the autarky

threshold. It is formally characterized as the unique belief satisfying h(πA)(πA+R −
1) = c, which equalizes the marginal flow gains and costs from a unit of prospecting.

(Recall our notational convention that πA+ = qHπA/h(πA) are the posterior beliefs

following receipt of a High signal, when beliefs are πA prior to observing the signal.)

If µ < πA, the firm abandons prospecting immediately. On the other hand, if µ > πA,

then the firm prospects at the maximum rate λ until a signal is acquired. Note that

πA is increasing in the cost parameter c.

Abandonment of prospecting if beliefs fall below πA occurs even with multiple

firms: If π0 lies below πA, then no prospecting or investing takes place in equilibrium,

despite the potential for social learning. Going forward we will assume that π0 > πA

for all costs below c, which the following lemma establishes is equivalent to assuming

R is sufficiently large.

Lemma 1. There exists a unique R0 ∈ (1/π+, 1/max{π+−, π0}) such that π0 > πA

for every c ≤ c if and only if R > R0.

Assumption 4. R > R0.

8A similar signal acquisition technology is employed in Akcigit and Liu (2016).
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Lemma 1 ensures that this bound is compatible with the restrictions on R imposed

by Assumptions 1 and 2. The bound could be dispensed with, at the cost of a more

stringent upper bound on allowed prospecting costs. To streamline our analysis, we

maintain Assumption 4 going forward.

3 Equilibrium analysis

In this section we characterize the set of perfect Bayesian equilibria of the model.

Going forward, we will use the term equilibrium without qualification to refer to

elements of this set. We find that our model has exactly three equilibria. One

equilibrium is symmetric and exhibits no free-riding or investment delay, but leads

both firms to eventually abandon prospecting for information about the project. The

remaining “leader-follower” equilibria feature distinct roles for the two firms, with

one firm who takes the lead in prospecting and investing while the other firm plays a

passive follower role. In general this equilibrium features either free-riding, investment

delay, or both by the follower, with the mix shifting from investment delay toward

free-riding as prospecting costs rise.

The section is structured as follows. In Section 3.1, we describe each firm’s optimal

continuation strategy after observing investment by the other firm. In Sections 3.2

and 3.3, we characterize the symmetric and leader-follower equilibria and provide

intuition for their properties. In Section 3.4, we prove that no other equilibria exist.

3.1 Behavior after observing investment

In the spirit of backward induction, we first characterize a firm’s optimal continuation

strategy after observing the other firm invest. It can be shown that in any equilibrium,

the first firm to invest is always in possession of a High signal.9 The remaining

firm therefore finds itself in a stationary single-player environment analogous to the

autarky benchmark studied in Section 2.2. If the firm has already acquired a signal,

its beliefs are either π++ > 1/R or π+− < 1/R, and no further information can be

acquired. The firm therefore either invests immediately if its signal is High, and

abandons the project otherwise.

On the other hand, if the firm has not yet acquired a signal, its beliefs are π+ >

9See Appendix A for a formal derivation of this result.
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1/R and it has the opportunity to acquire a signal before investing. This additional

signal is pivotal, given that π+− < 1/R, and would be worth the cost of acquiring if

not for time discounting, given c ≤ c. Whether the signal is in fact worth acquiring

depends on the comparison between the gains from more information, mediated by

R, and the cost and delay of obtaining it, captured by c, r, and λ.

As R rises, the firm becomes less willing to acquire an additional signal, because

the downside of a bad project becomes less important relative to the upside of a good

one. The firm also becomes less willing to wait if prospecting or delay costs rise, i.e.,

if c or r increase or λ decreases. Either acquiring an additional signal or investing

immediately can be optimal, depending on parameters. The following lemma formally

states how the optimal strategy changes with the discount rate r, a comparative static

that will be particularly useful for later results.10 (The proof is straightforward, and

so is omitted for brevity.)

Lemma 2. There exists a threshold discount rate r∗ ≥ 0 such that in any equilibrium,

subsequent to investment by some firm:

• If r ≤ r∗, the remaining firm prospects at rate λ until acquiring a signal, and

invests immediately if it acquires a High signal.

• If r > r∗, the remaining firm invests immediately if it has not yet acquired a

Low signal.

3.2 The symmetric equilibrium

We now characterize the unique symmetric equilibrium of the model. This equilibrium

exhibits no free-riding or investment delay, but does involve eventual abandonment

of prospecting by both firms.

To state the equilibrium, we define a time threshold at which a firm’s posterior

beliefs reach πA, assuming the other firm never delays signal acquisition or investment.

Suppose that some firm i prospects at rate λ forever and invests immediately whenever

it obtains a High signal. Let µλ(t) denote the associated posterior beliefs of firm −i
that θ = G, conditional on observing no investment by firm i until time t. These

beliefs decline over time, converging to π− as t→∞ and firm −i becomes sure that

10An identical result holds with respect to 1/λ. Analogous results could also be stated for R and c,
but with some additional care needed to account for the boundary conditions on these parameters.
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continued lack of investment implies that firm i has obtained a Low signal. Since

π+− < 1/R, it must be that πA > π−, and so µλ(t) crosses the autarky threshold πA

at some finite time, which we will denote TA ≡ (µλ)−1(πA).

Proposition 1 (The symmetric equilibrium). There exists a symmetric equilibrium

in which, whenever no investment has occurred:

• If firm i ∈ {1, 2} has not obtained a signal, it prospects at rate

λit =

λ, t ≤ TA

0, t > TA

• If firm i ∈ {1, 2} has obtained a High signal, it invests immediately.

This equilibrium unfolds as follows. Absent observing investment by the other

firm, each firm prospects at rate λ until time TA. Afterward each firm stops prospect-

ing forever. If at any time a firm observes investment (before or after time TA), it

follows the optimal continuation strategy characterized in Lemma 2. And if at any

time a firm is in possession of a High signal (on or off the equilibrium path), it invests

immediately. Finally, no firm invests while in possession of no signal or a Low signal.

One key feature of this equilibrium is that it exhibits neither free-riding nor in-

vestment delay. That is, at no point in time does a firm stop prospecting while its

beliefs are above πA, nor does any firm in possession of a High signal ever wait to

invest. Another important feature is that both firms eventually abandon prospecting

for information about the project. If by time TA no firm has invested, both firms

cease efforts to acquire a signal forever afterward.11

The prospecting strategies arising in this equilibrium do not reflect unique best

replies for either firm. Indeed, subsequent to time TA, each firm is indifferent between

prospecting or not, as their beliefs remain fixed at πA forever afterward. However,

abandoning prospecting is the unique continuation outcome that can be sustained as

part of an equilibrium. For it is precisely the lack of information arriving after beliefs

reach πA which makes it optimal for firms to prospect at all times prior to TA. If some

11This effect resembles the investment collapse phenomenon described in Chamley and Gale (1994).
In that paper a collapse is precipitated by randomization over investment at early stages of the
game. By contrast, in our setting abandonment of prospecting is induced by stochastic information
acquisition.
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firm were to continue prospecting, they would drive the other firm’s beliefs below πA

in finite time, and that firm would then no longer optimally prospect until time TA.

In the remainder of this subsection, we provide some intuition for the optimality of

each firm’s strategy in this equilibrium. First consider each firm’s investment strategy.

Because both firms quit prospecting at time TA, each firm’s beliefs are always at least

πA for all times, even absent a signal or any observed investment. This means that

after obtaining a High signal, each firm’s beliefs lie above 1/R forever. So by waiting

to invest, no firm ever obtains enough negative information to change their optimal

investment decision, meaning any delay in investing is suboptimal.

Now consider the equilibrium prospecting rule. At all times prior to TA, each

firm’s beliefs are above the autarky level, and so they would optimally prospect in

a single-player environment. However, in the presence of social learning, each firm

faces a tradeoff between acquiring information today in order to invest more quickly,

or saving on prospecting costs by waiting to see whether the other firm acts. Early

on, beliefs about the project are relatively good and the value of prospecting exceeds

the value of waiting. However, as firms approach time TA, both values converge to

zero, since both the single-player returns to prospecting as well as the probability

that the other firm eventually invests vanish.

The comparison between the value of prospecting and waiting at times close to

TA is mediated by the cost of prospecting. To see this, consider firm i’s choice of

whether to prospect an instant before TA. In a state of the world in which firm −i
does not invest by time TA, firm i’s beliefs at time TA−dt conditioning on this extra

information are exactly πA. In that case, its expected payoff at time TA − dt is zero

whether or not it prospects, and the net gain from prospecting is zero.

Meanwhile, in a state of the world in which firm −i does invest by time TA, firm

i’s expected payoff at time TA − dt is UFR = V if it free-rides, where

V = max

{
π+R− 1,

λ

λ+ r
(h(π+)(π++R− 1)− c)

}
is the larger of the values of investing immediately or obtaining another signal at time

TA. (Recall that the optimal continuation strategy depends on the sign of r − r∗, as

characterized in Lemma 2.) On the other hand if it prospects, its expected payoff is

UP = V (1− λ dt) + h(π+)(π++R− 1)λ dt− λc dt,

12



where the first term accounts for the possibility that i fails to acquire a signal by time

TA, in which case it follows its optimal continuation strategy upon seeing −i invest;

the second term accounts for the possibility that i acquires its own signal by time TA,

in which case it invests only if its own signal is positive; and the final term accounts

for the cost of prospecting.12 The net gain from prospecting an instant before TA in

this state of the world is therefore

UP − UFR = λ(h(π+)(π++R− 1)− V − c) dt.

If r ≤ r∗, then the follower optimally acquires its own signal upon seeing the

leader invest. In this case the payoff of prospecting trivially dominates the payoff of

free-riding, since the follower expects to eventually acquire the signal anyway. On

the other hand if r > r∗, then the gains from prospecting are non-negative whenever

c ≤ c = h(π+)(π++R− 1)− (π+R− 1), as imposed in Assumption 3. This condition

ensures that the improvement h(π+)(π++R−1)−(π+R−1) to i’s investment decision

from acquiring an additional signal is larger than the cost c of acquiring it in the

pivotal state of the world in which i acquires a signal and sees −i invest in the next

period. Note that the condition c ≤ c does not involve the discount rate r, since firm

i is not deciding whether to delay investment after seeing −i act in order to acquire

a signal, but rather is deciding whether to “front-run” firm −i by acquiring a signal

ahead of −i’s own action.

This calculation makes clear that each firm’s willingness to prospect until time TA

is closely linked to the information gained from a second signal. Were a single High

signal close to perfectly revealing, there would be no value to prospecting just before

time TA, and free-riding would necessarily arise in equilibrium. Our assumption that

signals are noisy drives the distinction between our results and those of BH, who

predict free-riding in the symmetric equilibrium of a model with perfectly revealing

good news.

3.3 The leader-follower equilibrium

We next characterize a pair of asymmetric equilibria in which firms adopt distinct

leader and follower roles. Unlike the symmetric equilibrium, prospecting is never

12Our expressions for UFR and UP drop terms related to discounting, which are second-order in
dt when computing UP − UFR.
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abandoned entirely: with probability 1 at least one firm eventually acquires a signal

about the project. However, they feature free-riding, investment delay, or both by

the follower. Throughout this section, we describe the equilibrium in which firm 1 is

the leader and firm 2 is the follower. By symmetry, another equilibrium exists with

the roles of the firms reversed.

Proposition 2 (The leader-follower equilibrium). There exists an equilibrium in

which, whenever no investment has occurred:

• If firm 1 has not obtained a signal, it prospects at rate λ1t = λ.

• If firm 1 has obtained a High signal, it invests immediately.

This equilibrium is characterized by time thresholds T F , T
∗
F ∈ [0,∞) such that, when-

ever no investment has occurred:

• If firm 2 has not obtained a signal, it prospects at rate

λ2t =

λ, t ≤ T F

0, t > T F

• If firm 2 has obtained a High signal, it invests immediately if t ≤ T ∗F , and waits

to invest otherwise.

These time thresholds are uniquely determined and satisfy min{T F , T ∗F} < TA.

This equilibrium unfolds as follows. If either firm observes investment when not

in possession of a signal, it follows the optimal continuation strategy characterized

in Lemma 2. Prior to such an event, the leader prospects at rate λ until it obtains

a signal. If at any time the leader is in possession of a High signal (on or off the

equilibrium path), it invests immediately. Meanwhile, the follower prospects only up

until the threshold time T F < ∞. If at any time t the follower is in possession of

a High signal (on or off the equilibrium path), it invests immediately if t < T ∗F , and

otherwise it waits for action by the leader. The bound min{T F , T ∗F} < TA implies

that the follower becomes passive, i.e., ceases investing ahead of the leader on the

equilibrium path, earlier than it would have in the symmetric equilibrium.13

13Note that when T ∗
F > TF , firm 2 does not acquire a signal on the equilibrium path at times

[TF , T
∗
F ] unless firm 1 invests. Nonetheless, the threshold time T ∗

F is the unique continuation strategy
consistent with the requirements of perfect Bayesian equilibrium in the off-path information sets in
which firm 2 has acquired a signal.
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Unlike the symmetric equilibrium of Proposition 1, the leader-follower equilibrium

exhibits free-riding, investment delay, or a combination of the two. The following

lemma characterizes when each arises as a function of the cost of prospecting.

Lemma 3 (Comparison of thresholds). There exist cost thresholds c∗, c∗ satisfying

c ≥ c∗ > c∗ > 0 such that:

• If c > c∗, then T F ≤ T ∗F , while if c < c∗, then T F > T ∗F .

• If c > c∗, then T F < TA, while if c < c∗, then T F > TA.

Further, if r is sufficiently small, then c > c∗.

This lemma establishes that equilibrium behavior moves through three distinct

regimes as prospecting costs rise. When costs are below c∗, the follower delays in-

vestment but never free-rides; that is, it prospects at least until its beliefs fall below

the autarky threshold. Meanwhile when costs are between c∗ and c∗, the follower

initially delays investment and eventually free-rides. Finally, when costs are above

c∗, the follower free-rides but never delays investment.14 Thus as prospecting costs

rise, the mix of free-riding and investment delay shifts toward the former and away

from the latter.

The findings of Lemma 3 are depicted graphically in Figure 1. This diagram de-

scribes the follower’s equilibrium strategy as a function of time (on the horizontal axis)

and the cost of prospecting (on the vertical axis). In region I, the follower prospects

and invests immediately upon acquisition of a positive signal.15 In region II, the fol-

lower free-rides and does not obtain a signal on the equilibrium path. This region

exists if costs are sufficiently high; in particular, above the cost threshold c∗ defined

by T F = TA.16 In regions III and IV, the follower prospects but delays investment if

it obtains a positive signal. This region exists if costs are sufficiently low, i.e., below

the cost threshold c∗ defined by T ∗F = T F . In region IV, the follower’s prospecting

would be unprofitable in the autarky benchmark, a phenomenon we analyze further

below. This region is present whenever costs are below c∗.

14While the firm does eventually stop investing when in possession of a High signal, any such
signal must have been acquired due to a deviation from its equilibrium strategy. We describe a
firm’s strategy as exhibiting delay only when waiting arises on-path, consistent with the convention
used in the investment timing literature. (See, e.g., Chamley and Gale (1994).)

15This region need not exist for all model parameterizations. In particular, T ∗
F = 0 if r is suffi-

ciently small.
16This region also disappears if c is sufficiently large that TA = 0. However, Assumption 4 ensures

that TA > 0 for all c ≤ c.
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Figure 1: The follower’s strategy as a function of time (horizontal axis) and c (vertical
axis). In region I it remains active. In region II it free-rides. In regions III and IV
it prospects but delays investment. In region IV prospecting is unprofitable in the
autarky benchmark.

In the remainder of this subsection, we provide some intuition for the structure of

the leader-follower equilibrium. Each firm’s behavior can be understood by comparing

their incentives here and in the symmetric equilibrium. In the latter equilibrium,

social learning stops at time TA for each firm, providing incentives which are just

strong enough to remain active up to this time. By contrast, in the current setting

the leader remains active longer, weakening the follower’s incentives to prospect and

invest. Hence the follower must become passive prior to time TA, as explained in

more detail below. This change in behavior in turn reinforces the leader’s desire to

remain active, since it no longer learns enough from the follower’s activities to push

its beliefs below the autarky threshold. Hence the follower’s behavior induces the

leader to actively prospect and invest at all times.
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Given the opportunity for social learning provided by the leader’s continued ac-

tivity after time TA, at all times prior to TA the follower’s continuation value must

be strictly positive. But since the return to actively prospecting and investing ap-

proaches zero for times close to TA, it cannot be optimal for the follower to continue

both of these activities until TA. In other words, by time TA at least one of A) the

follower’s value of actively prospecting, or B) his value of investing following acquisi-

tion of a signal, must fall below the option value of waiting to observe investment by

the leader. The time at which event A occurs is precisely T F , while the time of event

B is T ∗F .

It is not necessarily true that the value of prospecting is exhausted before the value

of investing, because obtaining a signal preemptively eliminates the delay involved

in obtaining a signal after seeing the leader invest. This “front-running” motive

yields a non-zero benefit from obtaining a signal even after T ∗F . The comparison

between T ∗F and T F hinges on the cost of prospecting. Intuitively, the follower’s

decision to delay investment is independent of c, since waiting to invest does not

involve any expenditure of prospecting costs. By contrast, the more costly prospecting

becomes, the sooner the follower prefers to free-ride. Hence for low c the follower

begins delaying investment before it stops prospecting, while for high c the opposite

is true. Strikingly, when c < c∗ the follower prospects even after its beliefs fall below

the autarky threshold. In this regime, the front-running motive boosts the value

of acquiring a signal compared to a one-player environment, encouraging additional

prospecting.

3.4 Characterization of the equilibrium set

So far we have demonstrated the existence of three equilibria: a symmetric equilibrium

and two leader-follower equilibria (which are identical up to permutation of firms).

We now establish that these equilibria constitute the entire equilibrium set.17

Proposition 3. There exist no equilibria, in pure or mixed strategies, beyond those

characterized in Propositions 1 and 2.

The bulk of the proof involves showing that, up to some technicalities, all equilibria

must be in strategies analogous to those arising in Propositions 1 and 2: each firm

17More precisely, the proposition establishes essential uniqueness, up to the usual continuous-time
degeneracies on sets of times and states of measure zero.
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i ∈ {1, 2} prospects at rate λ up to some threshold time T i and then stops prospecting

afterward; and similarly, if it has received a High signal, it invests immediately up

to a threshold time T ∗i and then waits to invest afterward. We call strategies of this

form threshold strategies.

The optimality of a threshold investing rule relies on an argument ruling out

waiting for a (possibly random) period and then investing. Such a strategy would

merely delay investment without conditioning it on the arrival of information in any

useful way. Therefore once it becomes optimal to wait at all, any optimal strategy

must involve waiting until the other firm has invested. The optimality of a threshold

prospecting rule is more technical, and requires studying the dynamics of the HJB

equation. Essentially, the proof establishes that the moment free-riding becomes even

weakly optimal, a firm’s value function must evolve in such a way that free-riding

remains strictly optimal forever afterward. As suggested by the discussion following

Proposition 1, the cost bound c ≤ c plays a key role in this argument.

Within the class of equilibria in threshold strategies, the equilibrium set can be

narrowed down by a straightforward classification argument. The symmetric equilib-

rium can be characterized as the unique equilibrium in which both firms stop investing

on-path at the same time. Within this class, the only way that both firms can become

passive at the same time in equilibrium is if both firms’ beliefs reach πA at this time.

For if some firm’s terminal beliefs were any higher, that firm would prefer to con-

tinue prospecting and investing afterward, and if its beliefs were any lower, it would

prefer to become passive sooner. Backward induction then pins down the symmetric

equilibrium as the unique behavior consistent with this outcome.

The leader-follower equilibrium can be characterized as the unique equilibrium

in the remaining case that some firm i remains active, that is, invests along the

equilibrium path, longer than the other. Let T̂−i be the time at which firm −i
becomes passive, and call firm −i the follower. In this case firm i, the leader, is

effectively in autarky after time T̂−i and prospects and invests immediately at all

future times. To sustain an equilibrium, it must then be a best response to the

leader’s continuation strategy for the follower to stop investing on-path at time T̂−i.

This optimality condition uniquely pins down T̂−i, which may be the time at which the

follower either stops prospecting or stops investing, depending on model parameters.

Once this time is pinned down, it can be shown that the leader’s unique best response

is to remain active prior to time T̂−i, which uniquely determines the remainder of the

18



equilibrium.

4 Comparing equilibrium payoffs

We have seen that our model has exactly two distinct equilibrium structures. In this

section we compare individual and aggregate payoffs across equilibria.

Let V S be the expected payoff of each firm in the symmetric equilibrium, and

let V L and V F be the expected payoffs to the leader and follower, respectively, in

the leader-follower equilibrium. Aggregate payoffs in the symmetric equilibrium are

then 2V S, while in the leader-follower equilibrium they are V L + V F . The following

proposition examines how both individual and aggregate payoffs compare across the

two equilibria.

Proposition 4. V F > V S ≥ V L. If r is sufficiently small, then V L + V F > 2V S.

There exists a c < c (independent of r) such that if c > c, then 2V S > V L + V F for

r sufficiently large.

The first result of the proposition is that the symmetric equilibrium generates

lower payoffs for each firm than the follower’s payoff, but (weakly) higher payoffs

than the leader’s payoff. Intuitively, the leader-follower equilibrium generates more

information from the leader but less from the follower than each firm would produce

in the symmetric equilibrium, and this change in social learning is reflected in the

remaining firm’s payoff.

Interestingly, the leader is not necessarily strictly worse off than it would be in

the symmetric equilibrium. This is because when the discount rate is low, each firm

acquires its own signal before investing, even after seeing the other firm invest. (See

Lemma 2.) In addition, in the symmetric equilibrium neither firm waits for the other

to invest once they are in possession of a High signal. Social learning therefore turns

out not to be pivotal for investment in the symmetric equilibrium at low discount

rates, and so the additional information generated does not raise payoffs.

This second result of the proposition is that when firms are patient, the leader-

follower equilibrium yields higher total firm profits than the symmetric one, while

when firms are impatient (and costs aren’t too low) the symmetric equilibrium is

superior. If the discount rate is low enough that V L = V S, this result is an immedi-

ate consequence of the individual payoff ranking. However, if V L < V S, comparing
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aggregate payoffs requires a balancing of higher payoffs generated by the symmetric

equilibrium early on, against higher payoffs generated by the leader-follower equilib-

rium later. Consequently, the comparison between the two equilibria turns on the

discount rate.

More precisely, in the symmetric equilibrium both firms contribute to social learn-

ing by actively prospecting and investing until the time TA. By contrast, in the

leader-follower equilibrium the leader remains active forever, while the follower re-

mains active only up to some time T̂F < TA. Comparing welfare therefore amounts

to comparing aggregate social learning in each equilibrium, taking into account time

discounting.

In the symmetric equilibrium, more social learning occurs during the time interval

[T̂F , T
A] than in the leader-follower equilibrium, while the latter equilibrium features

more social learning during the time interval [TA,∞).When firms are patient, the long

duration of social learning in the leader-follower equilibrium is the most important

factor determining welfare, and so aggregate payoffs are higher in this equilibrium.

By contrast, when firms are impatient, the additional social learning generated early

on in the symmetric equilibrium becomes important.

The subtlety in this argument is that T̂F approaches TA as the discount rate goes

to zero, requiring a careful calculation of total gains in the limit as r → 0. It turns out

that, under an appropriate normalization, the limiting gains from additional social

learning early in the symmetric equilibrium are strictly positive and increasing in

c. Thus when r is small and c is sufficiently large, these normalized gains outweigh

the normalized losses from reduced social learning later on, yielding higher aggregate

payoffs than in the leader-follower equilibrium.18

The ambiguity of this payoff comparison stands in contrast to the findings of

previous work on investment timing and collective experimentation. A classic exam-

ple in the investment timing literature is Gul and Lundholm (1995), who find that

asymmetric equilibria eliminate the war of attrition inherent in symmetric play and

reveal private information more quickly, improving aggregate welfare. By contrast,

since information acquisition is endogenous in our model, asymmetric play generates

an additional profit loss by reducing the incentives for the second mover to produce

and reveal information. The relative performance of symmetric and asymmetric play

18The cost bound c need not be very stringent. In particular, it can be shown that c < 0 when
positive and negative signals are both sufficiently informative.
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then becomes a horse race between the war of attrition effect of the symmetric equi-

librium, and the free-riding of the asymmetric equilibrium. This finding demonstrates

the importance of modeling incentives for information acquisition alongside invest-

ment timing when both effects are present in applications.

Meanwhile in the collective experimentation literature, BH finds that asymmetric

play increases aggregate payoffs versus symmetric play. Specifically, in the 2-player

version of their model, they characterize a continuum of asymmetric equilibria indexed

by the time at which the follower stops free-riding and begins exerting effort. They

show that aggregate payoffs are increasing in the amount of time the follower spends

free-riding. Key to their result is the fact that the more players are actively exerting

effort, the less total effort is exerted. By contrast, in our setting asymmetric play has

an ambiguous effect on total effort: effort early on is lower than in the symmetric

equilibrium while effort at later times is higher. Our contrasting welfare results are

therefore driven by important differences in behavior across the two models in both

symmetric and asymmetric equilibria.

5 Conclusion

We study a model of strategic investment timing with endogenous information ac-

quisition, with the aim of understanding the interplay of incentives for free-riding

and investment delay. We find that the extent and mix of free-riding and invest-

ment delay varies across equilibria as well as with the cost of acquiring information.

We further find that the equilibrium which maximizes aggregate payoffs varies with

model parameters, in particular the discount rate. These results are all closely linked

to our central assumption that positive signals are imperfectly informative, reveal-

ing new economic forces that are absent in models of strategic experimentation with

observable or perfectly revealing signals.

One limitation of our current analysis is its focus on a two-player setting. Extend-

ing our work to accommodate many players would bring it closer to applications, as

well as permit a richer study of the possibilities of asymmetric play. In particular, with

many players there might exist additional asymmetric equilibria featuring multiple

active players. Comparing aggregate payoffs across different asymmetric configura-

tions could reveal novel tradeoffs that further illuminate when and how asymmetric

play boosts payoffs.
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Our analysis also restricts attention to environments in which investment repre-

sents a pure information externality. In some applications, investment may addi-

tionally generate payoff externalities. For instance, early-stage startups may exhibit

increasing returns to scale and generate higher profits, or a greater probability of

success, when they are better-funded. In that case, investment by one firm would

raise the return on investment by another, strengthening incentives for strategic de-

lay. Extending our model to incorporate increasing returns to scale would enhance

its realism in such applications and allow informational and payoff externalities to be

compared as sources of strategic delay.
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Appendices

A Regular strategies

In this appendix we establish that in any perfect Bayesian equilibrium, lack of invest-

ment is (weakly) bad news about the state, while investment indicates that the other

firm has received a High signal.

Definition A.1. A firm’s strategy is regular if:

• Investment never occurs after receipt of a Low signal,

• Investment without a signal occurs only in histories in which the other firm has

invested.

The following lemma establishes that all firms choose regular strategies in equi-

librium. We shall invoke this fact repeatedly in what follows to focus our analysis on

a firm’s best response to play of a regular strategy by his rival.

Lemma A.1. In any equilibrium, each firm’s strategy is regular.

Proof. Fix an equilibrium. First consider a firm who has obtained a Low signal. Then

regardless of his beliefs about the content of any signal obtained by the other firm, his

posterior belief that the state is Good cannot be higher than π+−. As π+−R− 1 < 0

by assumption, investment in such a history is unprofitable. Thus in any equilibrium,

no firm invests in such a history.

Now consider a firm i who has obtained no signal by time t. If i believes that −i,
when following its equilibrium strategy, would have invested with probability strictly

less than 1 by time t, then this history is on-path. Firm i may then use Bayes’ rule

to update its beliefs about firm −i’s signal, and as −i does not invest when in receipt
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of a Low signal, lack of investment by time t is weakly negative news about S−i and

therefore about θ. Thus firm i’s posterior beliefs that θ = G are no higher than π0,

and investment in such a history is unprofitable. Thus in any equilibrium, no firm

invests in such a history.

The remaining possibility is that firm i has obtained no signal and is in a history

at which firm −i’s strategy called for investment with probability 1 prior to time

t. Such histories are off-path, and firm i is then free to choose its beliefs about S−i

arbitrarily. To complete the proof, we argue that such off-path histories cannot arise

in any equilibrium. Let ρi(t) be the cumulative time-t probability that each firm,

under its equilibrium strategy, invests prior to time t absent observing investment

by its rival. Each ρi is weakly increasing and left-continuous. Off-path histories

correspond to ρi(t) = 1.

Let t∗ ≡ inf{t : max{ρ1(t), ρ2(t)} = 1}, and suppose by way of contradiction

that t∗ < ∞. Prior to time t∗, histories are on-path, and so no firm invests when

in possession of no or a Low signal. As a result, it must be that ρi(t) ≤ (1 −
exp(−λt))h(π0) for each t < t∗ and firm i, since each firm’s prospecting rate is bounded

above by λ. Thus by left-continuity, ρ1(t∗), ρ2(t∗) < 1. Then also at time t∗, histories

involving lack of investment are on-path for both firms, meaning no firm invests when

in possession of a Low signal. But also by definition there exists a firm i for which

ρi(t) = 1 for arbitrarily small t > t∗, meaning that firm i must invest with strictly

positive probability when in possession of no signal at time t∗. This is a contradiction,

and so t∗ =∞, meaning all histories are on-path.

B Belief updating identities

In this appendix we derive several useful identities involving posterior beliefs about

the state in the event no investment by the other firm has been observed.

Fix a firm i and a strategy for firm −i which is regular (as defined in Appendix

A) with non-random prospecting and a threshold investment policy. We will let µi(t)

denote firm i’s time-t belief that the state is Good, supposing it has obtained no

signal and observed no investment. And we will let νi(t) denote firm i’s time-t belief

that firm −i has not yet obtained a signal, given that it has not yet invested.
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Lemma B.1. µi(t) is absolutely continuous, and

µ̇i(t) = −1{t < T ∗−i}νi(t)λ−i(t)h(π0)(π+ − µi(t))

almost everywhere.

Proof. For all times t > T ∗−i, firm i is in autarky with fixed beliefs, in which case µi(t)

is trivially absolutely continuous and satisfies the stated identity. So consider times

t ≤ T ∗−i. Then firm −i invests at variable Poisson rate νi(t)λ−i(t)h(π0), and arrival of

investment causes beliefs to jump from µi(t) to π+. It follows that µi(t) is absolutely

continuous and satisfies the Bayes’ rule condition that the average rate of change of

beliefs must be zero:

νi(t)λ−i(t)h(π0)(π+ − µi(t)) + µ̇i(t) = 0,

which is the desired identity.

Lemma B.2.

µ̇i(t) = −1{t < T ∗−i}λ−i(t)
µi(t)− π−
π+ − π−

(π+ − µi(t))

almost everywhere.

Proof. For all times t ≥ T ∗−i, firm i is in autarky with fixed beliefs, in which case the

identity trivially holds. So assume t < T ∗−i. Define

Ω−i(t) = exp

(
−
∫ t

0

λ−i(s) ds

)
.

to be the cumulative probability that firm −i has not obtained a signal by time t. By

Bayes’ rule

µi(t) =
(Ω−i(t) + (1− Ω−i(t))(1− qH))π0

Ω−i(t) + (1− Ω−i(t))l(π0)
=

Ω−i(t)π0 + (1− Ω−i(t))l(π0)π−
Ω−i(t) + (1− Ω−i(t))l(π0)

.

Solving this identity for Ω−i(t) yields

Ω−i(t) =
l(π0)

h(π0)

µi(t)− π−
π+ − µi(t)

.
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Taking the log of both sides, differentiating, and using the identity d
dt

log Ω−i(t) =

−λ−i(t) yields the desired relationship.

C Value functions and the HJB equation

In this appendix we describe properties of the the firm’s continuation value function

in several important classes of histories, supposing that the other firm uses a strategy

which is regular (as defined in Appendix A) with non-random prospecting and a

threshold investment policy.

We will use the following notation for value functions in different histories. V i(t)

will denote firm i’s time-t continuation value function given no signal and no invest-

ment by firm −i. V will denote i’s continuation value upon seeing firm −i invest.

(Note that V is independent of i and t.) V i
+(t) will denote firm i’s time-t continuation

value function given a high signal and no investment by firm −i. Finally, Ṽ i(t) will

denote firm i’s expected time-t continuation value after obtaining a signal, given no

investment by firm −i. Since obtaining a Low signal leads to no investment, it follows

that Ṽ i(t) = h(µi(t))V i
+(t).

Pre-signal/investment: By standard arguments, V i is the unique bounded, abso-

lutely continuous function satisfying the HJB equation

rV i(t) = λ
(
Ṽ i(t)− c− V i(t)

)
+

+ 1{t < T ∗−i}νi(t)λ−i(t)h(π0)(V − V i(t)) + V̇ i(t),

where νi(t) is firm i’s time-t belief that firm −i has not yet obtained a signal given

that it has not yet invested. Using Lemma B.1, the second term on the rhs may be

rewritten in terms of µi(t), firm i’s posterior belief that the state is Good:

rV i(t) =λ
(
Ṽ i(t)− c− V i(t)

)
+
− µ̇i(t)

π+ − µi(t)
(V − V i(t)) + V̇ i(t).

Note that the sign of Ṽ i(t)− c− V i(t) determines firm i’s optimal prospecting rule:

When it is strictly positive, the firm optimally prospects at rate λ; when it is strictly

negative, the firm optimally prospects at rate 0; and when it is zero, any prospecting

rate is optimal.

At various points in our analysis, it will be useful to express the HJB equation as
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F i(V i, t) = 0, where

F i(w, t) ≡ rw(t)− λ
(
Ṽ i(t)− c− w(t)

)
+

+
µ̇λ(t)

π+ − µλ(t)
(
V − w(t)

)
− ẇ(t)

is a functional which may be applied to arbitrary test functions w(t) to compute the

remainder of the HJB equation evaluated at w.

Post-investment: The continuation value V solves a simple single-agent problem

analogous to the autarky case of Section 2.2, but with a choice between prospecting

and immediate investment rather than between prospecting and free-riding given that

π+ > 1/R. V may be characterized explicitly as

V = max

{
π+R− 1,

λ

λ+ r
(h(π+)(π++R− 1)− c)

}
.

Recall from Lemma 2 that r∗ is defined as the minimal discount rate at which firm i

invests immediately after seeing firm −i invest. Thus r∗ corresponds to the smallest

r such that the first argument of the max operator dominates.

Post-signal: Following observation of a high signal, firm i’s continuation payoff

Ṽ i(t) is bounded below by the payoff of investing immediately if the signal is high,

and never investing otherwise. Thus Ṽ i(t) ≥ h(µi(t))(µi+(t)R − 1). Some algebra

yields the useful associated identity

h(µ)(µ+R− 1)− c = K(µ− πA),

where K ≡ qH(R − 1) + (1 − qL) > 0. Thus Ṽ i(t) − c ≥ K(µi(t) − πA), and the

inequality holds with equality if firm i optimally invests immediately upon obtaining

a high signal at time t.

Lemma C.1. V ≤ K(π+ − πA).

Proof. If r ≤ r∗, then V = λ
λ+r

K(π+−πA), in which case V < K(π+−πA). Otherwise,

V = π+R− 1, and so by Assumption 3, V ≤ K(π+ − πA).
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D Proofs

D.1 Proof of Lemma 1

The requirement that π0 > πA for every c ≤ c is equivalent to the condition h(π0)(π+R−
c) > c. By the law of total probability,

π+R− 1 = h(π+)(π++R− 1) + l(π+)(π+−R− 1),

so that c = −l(π+)(π+−R− 1) and the desired condition may be stated as φ(R) > 0,

where

φ(R) ≡ h(π0)(π+R− 1) + l(π+)(π+−R− 1).

Note that φ(R) is strictly increasing in R, and φ(1/π+) = l(π+)(π+−/π+ − 1) < 0

while φ(1/π+−) = h(π0)(π+/π+− − 1) > 0. Further, for any R < 1/π+−,

l(π+)(π+−R− 1) > l(π0)(π+−R− 1) > l(π0)(π−R− 1),

in which case φ(1/π0) > π0R − 1. So if 1/π0 < 1/π+− we have φ(1/π0) > 0. Thus

φ(1/max{π0, π+−}) > 0. It follows that there exists a unique R0, bounded between

1/π+ and 1/max{π0, π+−}, at which φ crosses zero, as desired.

D.2 Proof of Proposition 1

Fix a firm i, and suppose firm −i follows its equilibrium strategy. We first show that

firm i’s equilibrium prospecting policy is a best response. By Lemma D.10, firm i’s

optimal policy must be a threshold rule, so it remains only to argue that T ∗i = ∞
is the optimal threshold. Consider any time t > TA and history in which firm i has

obtained a High signal. Because µi(t) = πA, and h(πA)(πA+R − 1) > 0, it follows

that µi+(t) > 1/R. So investing immediately when in possession of a High signal at

any time, which yields a payoff of µi+(t)R − 1 > 0, dominates waiting until firm −i
invests, which yields a payoff of 0 (because firm −i never invests). As this argument

holds for arbitrary large t > TA, it must be that T ∗i =∞ is optimal.

It remains to verify that firm i’s optimal prospecting policy prior to obtaining a

signal is a threshold policy with T i = TA. Subsequent to the cutoff time TA the firm

is in autarky with beliefs πA, so λi(t) = 0 is trivially an optimal strategy from this
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point onward. So consider times prior to TA. Let V †(t) ≡ K(µλ(t) − πA), where K

is as defined in Appendix C. Inserting V † into the function F i defined in Appendix

C, and using the fact that Ṽ i(t) = V †(t) + c for all t given that µi = µλ and T ∗i =∞,
we have

F i(V †, t) = rV †(t) +
µ̇λ(t)

π+ − µλ(t)
(V −K(π+ − πA)).

Note that for t < TA, V †(t) > 0 and µ̇λ(t) < 0. Meanwhile Lemma C.1 in Appendix

C establishes the bound V ≤ K(π+ − πA). So F i(V †, t) > 0 for times t < TA.

Now, note that V †(TA) = 0 by definition of TA, while also V i(TA) = 0 given that

firm i is in autarky with beliefs πA subsequent to TA. Therefore V †(TA) = V i(TA).

This boundary condition, combined with the fact that F i(V †, t) > F i(V i, t) = 0

for all t < TA, implies by a standard result regarding supersolutions of ODEs that

V †(t) > V i(t) for all t ∈ [0, TA]. Then as Ṽ i(t) ≥ V †(t) + c, prospecting at the

maximum rate prior to TA is an optimal strategy.

D.3 Proof of Proposition 2

We first characterize the follower’s best response to the leader. This characterization

is built around a pair of belief thresholds which pin down the times at which the

follower stops prospecting and investing.

Let

∆I(µ) ≡ µ+ − π+−
π++ − π+−

λ

λ+ r
(π++R− 1)− (µ+R− 1).

As will be shown later, ∆I represents the difference in payoffs between waiting and

investing immediately following receipt of a High signal when current beliefs are µ.

Lemma D.1. ∆I is a strictly decreasing function of µ, and ∆I(π−) > 0. Also,

∆I(π0) =
λ

λ+ r
h(π+)(π++R− 1)− (π+R− 1).

In particular, ∆I(π0) > 0 whenever r ≤ r∗.

Proof. Differentiating ∆I yields

∆′I(µ) =

(
1

π++ − π+−
λ

λ+ r
(π++R− 1)−R

)
dµ+

dµ
.
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By assumption π+− < 1/R < π++, so

∆′(µ) < − r

λ+ r
R
dµ+

dµ
< 0.

Further, ∆I(π−) = −(π+−R− 1) > 0. Finally, to simplify ∆I(π0) use the law of total

probability to write π+ = h(π+)π++ + (1 − h(π+))π+−, or equivalently π+ − π+− =

h(π+)(π++−π+−). This identity may be used to write ∆I(π0) in the desired form.

In light of the previous lemma, define the investment belief threshold µ∗ ∈ (π−, π0]

as follows:

µ∗ ≡

π0, ∆I(π0) ≥ 0,

∆−1I (0), ∆I(π0) < 0.

Define the associated investment time threshold T ∗F ≡ (µλ)−1(µ∗). This threshold is

uniquely defined given that µλ is a strictly decreasing function satisfying µλ(0) = π0

and µλ(∞) = π−.

Next, define

∆P (µ) ≡ µ− π−
π+ − π−

λ

λ+ r
V − (V̌ (µ)− c),

where

V̌ (µ) ≡ h(µ) max

{
µ+R− 1,

µ+ − π+−
π++ − π+−

λ

λ+ r
(π++R− 1)

}
.

We will see later that ∆P represents the difference in payoffs between prospecting or

not when current beliefs are µ, and V̌ (µ) represents the average continuation value

after obtaining a signal at beliefs µ.

We note two important properties of V̌ . First, the argument of the max operator

which dominates depends on the size of µ relative to µ∗, with the first argument

dominating when µ > µ∗, while otherwise the second argument dominates. (When

∆(π0) ≤ 0, the two branches are equal when µ = µ∗. Otherwise, the second argument

dominates when µ = µ∗.) Second, V̌ (µ) can be rewritten using Lemma D.2 as

V̌ (µ) ≡ max

{
h(µ)(µ+R− 1),

µ− π−
π+ − π−

λ

λ+ r
h(π+)(π++R− 1)

}
,

a form which will be convenient for various proofs.
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Lemma D.2. For every µ ∈ [π−, π+],

h(π+)
µ− π−
π+ − π−

= h(µ)
µ+ − π+−
π++ − π+−

.

Proof. Note that both the lhs and rhs of the identity in the lemma statement are

affine functions of µ. (The lhs is immediate, while the numerator of the rhs may

be rewritten qHµ − π+−h(µ), which is affine in µ given that h(µ) is.) It is therefore

enough to show that they coincide at two distinct values of µ. Note that when µ = π−,

both sides vanish, while when µ = π+, both sides reduce to h(π+), as desired.

Lemma D.3. ∆P is a strictly decreasing function and ∆P (π−) > 0.

Proof. Let

∆̂(µ) ≡ µ− π−
π+ − π−

λ

λ+ r
(V − h(π+)(π++R− 1)) + c.

Differentiate ∆̂ to obtain

∆̂′(µ) =
1

π+ − π−
λ

λ+ r
(V − h(π+)(π++R− 1)).

By Lemma C.1, V ≤ K(π+− πA), i.e. V − h(π+)(π++R− 1) ≤ −c, and so ∆̂′(µ) < 0

for all µ.

Clearly ∆P (µ) = ∆̂(µ) for µ ≤ µ∗. Meanwhile ∆P (µ) ≤ ∆̂(µ) for µ > µ∗. Clearly

∆′P (µ) < 0 for µ < µ∗. Meanwhile as ∆P is continuous at µ∗ and an affine function of

µ on [µ∗, π0], to ensure ∆P ≤ ∆̂ it must be that ∆′P (µ) = ∆′P (µ∗+) ≤ ∆̂′(µ∗) < 0 for

µ ∈ (µ∗, π0]. Hence ∆P is a strictly decreasing function. Finally, note that ∆P (π−) =

c > 0.

In light of the previous lemma, define the prospecting belief threshold µ ∈ (π−, π0]

by

µ ≡

π0, ∆P (π0) ≥ 0,

∆−1P (0), ∆P (π0) < 0.

Define the associated prospecting time threshold T F ≡ (µλ)−1(µ).

We now show that the follower’s strategy is a best response to the leader’s strategy.

We further show that the best response is unique, which will be important for proving

Proposition 3.
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Lemma D.4. Suppose firm −i chooses the threshold strategy T ∗−i = T−i =∞. Then

firm i’s unique best response is the threshold strategy characterized by T ∗i = T ∗F and

T i = T F .

Proof. Given firm −i’s strategy, firm i’s posterior beliefs satisfy µi(t) = µλ(t) for

all time. Consider first firm i’s optimal investment policy. Lemma D.10 establishes

that an optimal policy must be a threshold rule, and so at each point in time either

V i
+(t) = W †(t) ≡ µλ+(t)R − 1, or else V i

+(t) = W ‡(t), where W ‡(t) is the value of

investing immediately after the leader invests. The follower’s investment cutoff time

is determined by the first time at which W †(t) falls below W ‡(t).

The value W ‡(t) may be calculated explicitly as

W ‡(t) = νλ+(t)
λ

λ+ r
h(π+)(π++R− 1),

where νλ+(t) is firm i’s posterior belief that firm −i has not yet received a signal, given

that −i has not yet invested and firm i’s signal is High, and the remainder of the

expression is the expected discounted value of waiting for firm −i to acquire a signal

and invest. This argument additionally establishes that Ṽ i(t) = h(µλ(t))V i
+(t) =

V̌ (µλ(t)) for all t.

Variants of Lemmas B.1 and B.2 applied to an environment with initial beliefs π+

can be used to obtain two expressions for µ̇λ(t); equating these two expressions yields

νλ+(t) = (µλ+(t) − π+−)/(h(π+)(π++ − π+−)). Comparing W ‡(t) −W †(t) with ∆I(µ),

we see that W †(t) falls below W ‡(t) at the time t such that µλ(t) = µ∗. So T ∗i = T ∗F
is firm i’s unique optimal investment threshold.

We now derive firm i’s optimal prospecting strategy. Recall that in Appendix C

we showed that the HJB equation satisfied by firm i’s continuation value function

V i may be expressed as F i(V i, t) = 0. We first consider times t ≥ T . Let V †(t) ≡
µλ(t)−π−
π+−π−

λ
λ+r

V . For all times t ≥ T F , µλ(t) ≤ µ and so ∆P (µλ(t)) = V †(t)− V̌ (µλ(t))+

c ≥ 0. Since Ṽ i(t) = V̌ (µλ(t)) for all time, we therefore have V †(t) ≥ Ṽ i(t)− c for all

t ≥ T F . Inserting V † into F i therefore yields

F i(V †, t) =

(
µλ(t)− π−
π+ − π−

λ+
µ̇λ(t)

π+ − µλ(t)

)
r

λ+ r
V

for t ≥ T F . Using Lemma B.2 to eliminate µ̇λ(t) yields F i(V †, t) = 0. As V † is a
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bounded, absolutely continuous function, it follows by a standard verification argu-

ment that V i(t) = V †(t) for t ≥ T F . It follows immediately that for times t > T F ,

we have ∆P (µλ(t)) = V †(t) − V̌ (µλ(t)) + c = V i(t) − Ṽ i(t) + c > 0, meaning that

λi(t) = 0 is firm i’s unique optimal prospecting policy for times t > T F .

Now consider times t < T F . If µ = π0 then this time interval is empty, so assume

µ < π0. Let V ‡(t) ≡ V̌ (µλ(t)) − c. We will show that F i(V ‡, t) > 0 for all t < T F ,

where F i is as defined in Appendix C.

Note first that Ṽ i(t) = V̌ (µλ(t)) implies that V ‡(t) = Ṽ i(t) − c, an identity

which will prove useful for evaluating F i(V ‡, t). Also, ∆P (µλ(T F )) = 0 implies that

V ‡(T F ) = V †(T F ). In particular, since V †(T F ) > 0 and V ‡(t) is strictly decreasing in

t, we have V ‡(t) > 0 for t < T F .

Suppose t ≤ T̂F ≡ min{T F , T ∗F}. On this time range V̌ (µλ(t))−c = K(µλ(t)−πA),

and so F i(V ‡, t) evaluates to

F i(V ‡, t) = rV ‡(t) +
µ̇λ(t)

π+ − µλ(t)
(V −K(π+ − πA)).

By Lemma C.1, V ≤ K(π+−πA). Further, we established above that V ‡(t) > 0. Thus

F i(V ‡, t) > 0.

If µ ≥ µ∗ then there are no further times to check, so suppose instead that µ < µ∗

and t ∈ (T ∗F , T F ). For such times,

V̌ (µλ(t)) =
µλ(t)− π−
π+ − π−

λ

λ+ r
h(π+)(π++R− 1) =

µλ(t)− π−
π+ − π−

λ

λ+ r
(K(π+ − πA) + c).

This expression, combined with the identity derived in Lemma B.2, allows us to

evaluate F i(V ‡, t) as

F i(V ‡, t) = −λµ
λ(t)− π−
π+ − π−

(V −K(π+ − πA))− rc.

Now, µλ(t) ∈ (µ, µ∗) for t ∈ (T ∗F , T F ), and therefore

∆P (µλ(t)) =
µλ(t)− π−
π+ − π−

λ

λ+ r
(V −K(π+ − πA)− c) + c < 0,
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or equivalently

−λµ
λ(t)− π−
π+ − π−

(V −K(π+ − πA)) ≥ (λ+ r)c− µλ(t)− π−
π+ − π−

λc > rc.

So F i(V ‡, t) > 0 for t ∈ (T ∗F , T F ).

We have established that F i(V ‡, t) > 0 for all T < T F , and further that V ‡(T F ) =

V †(T F ). Recall that we earlier established V ‡(t) = V i(t) for all times t ≥ T F , so

V ‡(T F ) = V i(T F ). Then as F i(V i, t) = 0 for all t ≤ T F , a standard result regarding

supersolutions of ODEs implies that V ‡(t) > V i(t) for all t < T . Then the identity

V ‡(t) = Ṽ i(t)− c implies that λi(t) = λ is uniquely optimal for t ≤ T F .

We now establish that the leader’s strategy is a best reply to the follower’s.

Lemma D.5. Suppose that firm −i employs a threshold strategy satisfying µλ(T̂−i) >

πA, where T̂i ≡ min{T ∗−i, T−i}. Then firm i’s unique best reply is the threshold strategy

T ∗i = T i =∞.

Proof. Subsequent to time T̂−i, firm i is in autarky with beliefs µi(t) = µλ(T̂−i) > πA.

Thus its unique optimal policy for times t ≥ T̂−i is to prospect at rate λ and invest

immediately. By Lemma D.10, it follows that firm i’s unique optimal investment strat-

egy is the cutoff rule T ∗i =∞. It remains only to characterize i’s optimal prospecting

behavior prior to time T̂−i. Note that for such times, µi(t) = µλ(t).

Define V †(t) ≡ K(µλ(t)− πA). Since T ∗i = ∞, it must be that Ṽ i(t)− c = V †(t)

for all times. Then inserting V † into the functional F i defined in Appendix C yields

F i(V †, t) = rV †(t) +
µ̇λ(t)

π+ − µλ(t)
(V −K(π+ − πA)).

Note that V ≤ K(π+ − πA) by Lemma C.1, so the second term on the rhs is non-

negative. Meanwhile µλ(t) > πA for t ≤ T̂−i, meaning V †(t) > 0. So F i(V †, t) > 0 for

all such t ≤ T̂−i.

Now note that as firm i is in autarky at time T̂−i, its value function at this point

is V i(T̂−i) = λ
λ+r

V †(T̂−i) < V †(T̂−i). This boundary condition, combined with the

fact that F i(V †, t) > 0 while F i(V i, t) = 0 for all t < T̂i, implies by a standard result

regarding supersolutions of ODEs that V †(t) > V i(t) for all t ∈ [0, T̂i]. Then the fact

that Ṽ i(t)−c = V †(t) implies that λ−i(t) = λ is firm −i’s unique optimal prospecting

policy for times t < T̂i.
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Combining this result with the following lemma establishes that the leader’s strat-

egy is a best response to the follower’s and completes the proof.

Lemma D.6. max{µ, µ∗} > πA.

Proof. If µ = π0 then the result is automatic. So assume µ < π0, in which case µ is

pinned down by the condition ∆P (µ) = 0. If µ ≥ µ∗, then ∆P (µ) = 0 may be written

µ− π−
π+ − π−

λ

λ+ r
V −K(µ− πA) = 0.

As µ > π−, it must be that µ > πA for this equality to hold. If instead µ∗ > µ, then

∆P (µ∗) < 0, which is equivalently

µ∗ − π−
π+ − π−

λ

λ+ r
V −K(µ∗ − πA) < 0.

As µ∗ > π−, it must be that µ∗ > πA for this equality to hold.

D.4 Proof of Lemma 3

Note that ∆P , µ, T
∗
F πA, T

A, and V are each functions of c, while ∆I , µ
∗, and T F are

independent of c. Wherever a parameter depends on c, we will make that dependence

explicit throughout this proof.

We begin with a series of auxiliary lemmas.

Lemma D.7. µ(c) is increasing in c, strictly so whenever µ(c) < π0.

Proof. Recall that

∆P (µ, c) =
µ− π−
π+ − π−

λ

λ+ r
V − V̌ (µ) + c,

where V̌ (µ) is not a function of c. When r > r∗, V is independent of c, and so

∂∆P/∂c = 1 > 0. Otherwise, ∂V /∂c = − λ
λ+r

, so that

∂∆P

∂c
= − µ− π−

π+ − π−

(
λ

λ+ r

)2

+ 1 > 0.

In either case, ∆P is strictly increasing in c for every µ. Since ∆P is strictly decreasing

in µ, the lemma statement follows.
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Lemma D.8. µ(c) < min{µ∗, πA(c)} when c is sufficiently small.

Proof. Note that ∆P (µ∗, c) may be written

∆P (µ∗, c) =
µ∗ − π−
π+ − π−

λ

λ+ r

(
V (c)− h(π+)(π++R− 1)

)
+ c.

For all c we have V (c) ≤ max
{
π+R− 1, λ

λ+r
h(π+)(π++R− 1)

}
< h(π+)(π++R− 1).

Therefore the first term in the previous expression for ∆P (µ∗, c) is bounded below

zero for all c, while the second term vanishes as c→ 0. It follows that ∆P (µ∗, c) < 0

for sufficiently small c, in which case µ(c) < µ∗.

Next, note that when c = 0, πA(c) satisfies h(πA(c))(πA+(c)R − 1) = 0, i.e.

πA+(c) = 1/R. Hence πA+(c) > π− given that π+− < 1/R. Additionally, using the

fact that V̌ (µ) ≥ µ−π−
π+−π−

λ
λ+r

h(π+)(π++R− 1) for all µ, we must have

∆P (πA(c), c) ≤ πA(c)− π−
π+ − π−

λ

λ+ r
(V (c)− h(π+)(π++R− 1)) + c.

Given that πA(0) > π−, an argument very similar to the one in the previous paragraph

shows that this upper bound is negative for sufficiently small c, implying that µ(c) <

πA(c) for such costs.

Lemma D.9. If r is sufficiently small, then µ(c) = π0 for costs sufficiently close to

c.

Proof. Note that for sufficiently small r, ∆I(π0) > 0 and µ∗ = π0. For such a choice

of r, we have

∆P (π0, c) =
π0 − π−
π+ − π−

λ

λ+ r

(
V (c)− h(π+)(π++R− 1)

)
+ c.

Since V (c) ≥ π+R− 1, this expression is bounded below as

∆P (π0, c) ≥ c− π0 − π−
π+ − π−

λ

λ+ r
c.

When c = c, this bound is strictly positive, implying µ(c) = π0, as desired.

We now establish existence of a cost threshold c∗ with the stated properties.

Lemma D.7 implies that T F (c) is decreasing in c, and is strictly decreasing whenever it
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is strictly positive. Further, Lemma D.8 implies that T F (c) > T ∗F when c is sufficiently

small. Then either there exists a c∗ ∈ (0, c) below which T F (c) > T ∗F and above which

T F (c) ≤ T ∗F (with the inequality possibly weak if T ∗F = 0) or else T F (c) > T ∗F for

every c ≤ c. Letting c∗ = c in the latter case, this choice of c∗ satisfies the properties

claimed in the lemma. Further, Lemma D.9 establishes that when r is sufficiently

small, T F (c) = 0 for c sufficiently close to c. But then for such c it is automatically

the case that T F (c) ≤ T ∗F , meaning that c∗ < c.

We next establish existence of a cost threshold c∗ with the stated properties.

For this result, it is sufficient to show that the function ∆P (πA(c), c) is negative for

sufficiently small c, positive for c ∈ [c∗, c], and crosses zero exactly once on the interval

(0, c∗), for then the crossing point c∗ will satisfy satisfy the desired properties.

Lemma D.8 implies that ∆P (πA(c), c) < 0 for c sufficiently small. And if c∗ < c,

then when c ≥ c∗ we have µ(c) ≥ µ∗. But by Lemma D.6, max{µ, µ∗} > πA(c), so

we must have µ(c) > πA(c), i.e. ∆P (πA(c), c) > 0. On the other hand if c∗ = c, then

µF (c) ≤ µ∗ and Lemma D.6 requires that µ∗ > πA(c), in which case

∆P (πA(c), c) =
πA(c)− π−
π+ − π−

λ

λ+ r
(V (c)− h(π+)(π++R− 1)) + c.

Using the lower bound V (c) ≥ π+R− 1, we can bound ∆P (πA(c), c) below as

∆P (πA(c), c) ≥ c

(
1− πA(c)− π−

π+ − π−
λ

λ+ r

)
> 0,

ensuring that ∆P (πA(c∗), c∗) > 0 in all cases.

It remains only to show that ∆P (πA(c), c) satisfies single-crossing on (0, c∗). On

this interval we have µ(c) < µ∗ by definition of c∗, and so also µ∗ > πA(c) by Lemma

D.6. Thus

∆P (πA(c), c) = c− πA(c)− π−
π+ − π−

λ

λ+ r
(h(π+)(π++R− 1)− V (c))

for c ∈ (0, c∗). Define the threshold c ≥ 0 to be the smallest c for which V (c) =

π+R − 1, in case this cost threshold is positive; and otherwise set c = 0. Then for
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c ∈ (0, c∗) we may write

∆P (πA(c), c) =

χ(c), c < c

χ(c), c ≥ c

where

χ(c) ≡ c− πA(c)− π−
π+ − π−

λ

λ+ r

(
h(π+)(π++R− 1)− λ

λ+ r
(h(π+)(π++R− 1)− c)

)
and

χ(c) ≡ c− πA(c)− π−
π+ − π−

λ

λ+ r
c.

As ∆P (πA(c), c) is continuous across the interface c = c, it is sufficient to establish

that each of χ(c) and χ(c) crosses zero at most once on (0, c∗), and that any such

crossing is from below.

Recall that πA(c) is the solution to h(µ)(µ+R − 1) = c. This is a linear equation

for µ, and its solution is affine in c. Hence χ(c) is also affine in c. Further, χ(0) < 0

while χ(c) > 0. So χ(c) is a strictly increasing affine function on [0, c], ensuring that

it crosses zero at most once on (0, c∗), from below.

Meanwhile χ(c) is a concave quadratic in c which satisfies χ(0) < 0. If we can

find some c† > c∗ such that χ(c†) > 0, then χ(c) is assured to cross 0 at most once

on (0, c∗), from below. Choosing c† = h(π+)(π++R − 1), which satisfies c† > c ≥ c∗,

we have

χ(c†) =

(
1− πA(c†)− π−

π+ − π−
λ

λ+ r

)
h(π+)(π++R− 1).

Now, by definition of πA(c) we have πA(c†) = π+. Therefore χ(c†) > 0, as desired.

D.5 Proof of Proposition 3

Throughout this proof, fix an equilibrium strategy profile. For each firm i, define

the time thresholds tAi ≡ inf{t : µi(t) ≤ πA}, t+,0i ≡ inf{t : µi+(t) ≤ 1/R}, and

t+,00i ≡ inf{t : µi+(t) < 1/R}. In other words, tAi is the first time firm i’s beliefs reach

the autarky threshold; t+,0i is the first time its beliefs reach the threshold 1/R; and

t+,00i is the first time its beliefs fall below 1/R. Note that in general t+,00i ≥ t+,0i , and

the inequality is strict iff i’s beliefs remain constant at 1/R over some time interval.
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We begin by establishing that, up to a technicality, each firm must use a threshold

rule for investment.

Lemma D.10. Suppose that firm i has obtained a High signal.

• If t+,00i < ∞, there exists a cutoff time T ∗i ≤ t+,0i such that firm i invests

immediately if t < T ∗i , and invests only after seeing firm −i invest if t > T ∗i .

• If t+,00i =∞, firm i invests immediately if t < t+,0i .

Proof. Fix any firm i and time t ≤ t+,0i . Suppose that given firm −i’s strategy, there

exists a best reply for firm i which involves investing immediately at time t, supposing

the firm has not invested yet or observed the other firm invest. Then there must be a

best reply which, beginning at any time t′ < t, involves waiting no longer than time t

to invest. But the payoff of such a strategy is just a discounted version of the payoff of

investing at time t′, as the investment happens regardless of any information gained

from firm −i between times t′ and t. Since t′ < t+,0i , this payoff is strictly positive, and

so it must be suboptimal to delay beyond time t′. So firm i’s strategy must involve

immediate investing at every time t′ < t.

Meanwhile, it is trivially suboptimal for the firm to invest at any time t > t+,00i

prior to observing investment. If additionally t+,00i < ∞, it must also be subptimal

for the firm to invest at any time t ∈ [t+,0i , t+,00i ], since at breakeven beliefs the firm

makes no profits from investing immediately, but makes strictly positive profits with

positive probability by waiting to see if firm −i invests.

Therefore if t+,00i < ∞, letting T ∗i be the supremum of times at which investing

immediately is a best reply for firm i, it must be that T ∗i ≤ t+,0i , and firm i must

invest immediately at all times prior to T ∗i , while it must never invest prior to seeing

investment subsequent to time T ∗i .

On the other hand, if t+,00i = ∞, it must be a best reply for firm i to invest

immediately at any time t ≥ t+,0i , since beliefs remain at the breakeven level forever

subsequent to this time. Thus if t+,0i < ∞, then firm i’s strategy must involve

immediate investing at every time t < t+,0i . And if t+,0i = ∞, then investment is

strictly profitable at all times no matter what information arrives, and so any delay

is suboptimal. Thus again firm i’s strategy must involve immediate investing prior

to t+,0i =∞.
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This lemma ensures that firms’ investment policies must take the form of threshold

rules, except in the case that t0i < t00i = ∞. However, multiplicity of best replies in

that case impacts outcomes only off-path, as on-path the firm either obtained a High

signal prior to t0i and invested immediately; or else it obtained no signal prior to

t0i , after which a signal is valueless and the firm does not optimally acquire one.

Therefore any choice of a non-threshold investment policy in this case has no impact

on equilibrium outcomes.

Our proof will proceed by restricting attention to equilibria in threshold invest-

ment strategies, with each firm’s investment threshold denoted by T ∗i . This analysis

will characterize all possible equilibrium paths, and in particular will establish that

either t00i < ∞ or else t0i = ∞ in any equilibrium, proving that all equilibria involve

threshold investment policies.

Now, assume that both players use pure prospecting strategies. We will maintain

this assumption until the end of the proof, when we verify that no equilibria with

mixed prospecting strategies can exist.

We next establish an important technical result about the dynamics of the value

of effort prior to time tAi . This result will be critical to establishing that firms follow

a threshold prospecting rule in any equilibrium. For each firm i, define fi(t) ≡
V i(t) − K(µi(t) − πA). Note that fi(t) ≥ V i(t) − Ṽ i(t) + c, with equality for all

t < T ∗i .

Lemma D.11. Fix any firm i. Then for almost every t ∈ [0,min{T ∗i , tAi }], either

fi(t) < 0 or f ′i(t) > 0.

Proof. Fix a firm i. Suppose first that T ∗−i ≤ t < tAi . Then at time t firm i is in autarky

with beliefs µi(t) > πA, meaning its continuation value is V i(t) = λ
λ+r

K(µi(t)−πA) <

K(µi(t) − πA). Thus fi(t) < 0 for all such times. So it is sufficient to establish the

result for t < min{tAi , T ∗i , T ∗−i}.
Note that whenever t < T ∗i , we have fi(t) = V i(t) − Ṽ i(t) + c. Then for almost

every t < min{T ∗i , T ∗−i} such that fi(t) ≥ 0, V i(t) must satisfy the HJB equation

rV i(t) = λ−i(t)
µi(t)− π−
π+ − π−

(V − V i(t)) + V̇ i(t).
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This may be rewritten in terms of f and f ′ as

f ′i(t) = rK(µi(t)− πA)− λ−i(t)µ
i(t)− π−
π+ − π−

(V −K(π+ − πA)− fi(t)) + rfi(t).

The first term on the rhs of this expression is strictly positive for every t < tAi . Further,

by Lemma C.1, V ≤ K(π+−πA). Finally, the coefficient on fi(t) on the rhs is always

non-negative. Thus whenever fi(t) ≥ 0, we must have f ′i(t) > 0.

We proceed by splitting the analysis into two cases: either T ∗i <∞ for some firm

i, or else T ∗1 = T ∗2 = ∞. We will show that in the first case, the only permissible

equilibrium behavior is the leader-follower strategy profile, while in the second case,

the only permissible behavior is the symmetric equilibrium profile. Consider first the

T ∗i < ∞ case. The following lemma establishes that the remaining firm −i must

employ the leader strategy in any equilibrium.

Lemma D.12. Suppose that T ∗i <∞ for some firm i. Then firm −i must follow the

threshold strategy T−i = T ∗−i =∞.

To establish this result, we first prove an auxiliary lemma which restricts the

permissible scope of equilibrium behavior and beliefs in response to a firm using a

threshold investment rule with T ∗i <∞.

Lemma D.13. Suppose that T ∗i <∞ for some firm i. Then T ∗−i =∞ and µ−i(T ∗i ) >

πA.

Proof. Suppose by way of contradiction that µ−i(T ∗i ) < πA. Then beginning at time

T ∗i , firm −i is in autarky with beliefs below the autarky threshold, implying that

it does not invest on the equilibrium path after time T ∗i . Further, on the interval

(tA−i, T
∗
i ], we have V −i(t) ≥ 0 > K(µi(t) − πA). Then at all such times, it cannot be

optimal for firm i to both prospect and invest immediately upon acquiring a signal.

Therefore firm −i is in autarky beginning at time tA−i.

But since tA−i < T ∗i by continuity of µ−i, the fact that it is optimal for firm i

to invest immediately at times in [tA−i, T
∗
i ) but wait after T ∗i implies that µi+(tA−i) =

µi+(T ∗i ) = 1/R. Therefore µi(tA−i) < πA, so λi(t) = 0 for all t ≥ tA−i. But then on the

equilibrium path firm i does not invest first after tA−i, implying firm −i is in autarky

with constant beliefs µ−i(t) = µ−i(tA−i) = πA for all times t > tA−i. This contradicts

µ−i(T ∗i ) < πA, so it must be that µ−i(T ∗i ) ≥ πA, and in particular T ∗i ≥ tAi .
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Subsequent to time T ∗i , firm −i is in autarky with fixed beliefs no lower than the

autarky threshold. Therefore µ−i+ (t) > 1/R for all t ≥ T ∗i , in which case immediate

investing is strictly superior to waiting forever for every t ≥ T ∗i . Thus firm −i must

choose T ∗−i =∞.
Now suppose by way of contradiction that µ−i(T ∗i ) = πA, in which case tA−i ≤ T ∗i .

As firm −i’s beliefs do not change over the interval [tA−i, T
∗
i ], it must be in autarky

with constant beliefs πA from time tA−i onward, implying V −i(t) = 0.

Note that V −i(tA−i) = 0 and µ−i(tA−i) = πA imply f−i(t
A
−i) = 0. But by Lemma

D.11, for almost every t ∈ [0, tA−i] either f−i(t) < 0 or f ′−i(t) > 0. These conditions

imply that if f−i(t) = 0 for some t < tA−i, then f−i(t) > 0 for all t′ ∈ (t, tA−i]. Hence

f−i(t) < 0 for all t < tA−i, implying that for all such times the value of waiting is

less than the value of prospecting and investing immediately upon obtaining a High

signal. Since this investment strategy is a lower bound on the value of prospecting,

it must be that λ−i(t) = λ a.e. on [0, tA−i].

This prospecting policy, combined with T ∗−i = ∞, implies that µi(t) ≤ µ−i(t) for

t ∈ [0, tA−i] and therefore tAi ≤ tA−i. If tAi < tA−i, then for every t ∈ (tAi , t
A
−i), firm −i’s

prospecting and investment policies imply that µi(t) < πA, meaning it cannot be

optimal for firm i to both prospect and invest immediately upon obtaining a signal

at any such time. Thus firm i does not invest on the equilibrium path on this time

interval, implying µ−i is constant on the interval, contradicting the definition of tA−i.

So tA1 = tA2 = tA for some tA, which can only hold if T ∗i ≥ tA and λi(t) = λ for almost

every t ∈ [0, tA].

If V i(tA) > 0, then given continuity of V i and µi, for sufficiently large t < tA it

would be the case that V i(t) > K(µi(t) − πA). But then it cannot be optimal for

firm i to both prospect and invest immediately at such times, a contradiction. So

V i(tA) = 0. But as T ∗−i = ∞, this can be true only if λ−i(t) = 0 for a.e. t > tA. But

then subsequent to time TA, firm i is in autarky with beliefs µi(t) = πA, contradicting

the optimality T ∗1 <∞. So µ−i(T ∗i ) > πA, as desired.

Proof of Lemma D.12. Lemma D.13 establishes that T ∗−i = ∞ and µ−i(T ∗i ) > πA.

The latter inequality implies that for t > T ∗i , firm −i is in autarky with beliefs above

the autarky threshold, meaning −i’s unique optimal prospecting policy subsequent to

T ∗i is λ−i(t) = λ. It remains only to pin down firm −i’s optimal prospecting behavior

prior to T ∗i .

Define V †−i(t) ≡ K(µi(t)−πA). Since T ∗−i =∞, it must be that Ṽ −i(t)−c = V †−i(t)
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for all times. Then inserting V †−i into the functional F−i defined in Appendix C yields

F−i(V †−i, t) = rV †−i(t) +
µ̇−i(t)

π+ − µ−i(t)
(V −K(π+ − πA)).

Note that V ≤ K(π+ − πA) by Lemma C.1, so the second term on the rhs is non-

negative. Meanwhile for t ≤ T ∗i , µ
−i(t) > πA and therefore V †−i(t) > 0. Thus

F−i(V †−i, t) > 0 for all times t ≤ T ∗i .

Now note that as firm −i is in autarky at time T ∗i , its value function at this point

is V −i(T ∗i ) = λ
λ+r

V †−i(T
∗
i ) < V †−i(T

∗
i ). This boundary condition, combined with the

fact that F−i(V †−i, t) > 0 while F−i(V −i, t) = 0 all t ∈ [0, T ∗i ], implies by a standard

result regarding supersolutions of ODEs that V †−i(t) > V −i(t) for all t ≤ T ∗i . Then as

V †−i(t) = Ṽ −i(t)− c, λ−i(t) = λ is firm −i’s unique optimal prospecting strategy prior

to T ∗i .

Lemma D.12 establishes that in any equilibrium in threshold investment strate-

gies in which some T ∗i <∞, the other firm must follow the leader’s strategy. Mean-

while Lemma D.4 establishes that the follower’s strategy is a unique best reply to

the leader’s strategy. So there exists a unique equilibrium in threshold investment

strategies with some T ∗i <∞, namely the leader-follower equilibrium.

The following lemma treats the remaining case, in which T ∗1 = T ∗2 = ∞. It es-

tablishes that the symmetric equilibrium strategies are the only ones consistent with

equilibrium in this case.

Lemma D.14. Suppose T ∗1 = T ∗2 =∞. Then both firms follow threshold prospecting

policies with T 1 = T 2 = TA.

Proof. Note that when T ∗1 = T ∗2 = ∞, we have fi(t) = V i(t) − Ṽ i(t) + c for every

i and t, and so a firm’s optimal prospecting rate depends only on the sign of fi(t).

Further, fi(t) ≥ 0 whenever t ≥ tAi , and the inequality is strict if either µi(t) < πA

or V i(t) > 0. Also, by Lemma D.11, for each firm i and almost every t < tAi either

fi(t) < 0 or f ′i(t) > 0.

Suppose first that tAi < tA−i for some firm i. Define tAAi ≡ inf{t : µi(t) < πA}. If tAAi
is finite, then for each time t ∈ (tAi , t

AA
i ] firm i expects firm −i to invest at some point

in the future with positive probability, meaning V i(t) > 0. And for each time t > tAAi

we have µi(t) < πA. Thus for all times t > tAi we must have fi(t) > 0 and λi(t) = 0.

In this case firm −i is in autarky with beliefs strictly above its autarky threshold
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beginning at time tAi , meaning λ−i(t) = λ going forward. But then eventually firm i’s

posterior beliefs must drop below µ∗, at which point it cannot be optimal for firm i

to invest immediately after obtaining a signal, a contradiction of T ∗i =∞. So it must

be that tAAi =∞, i.e. λ−i(t) = 0 for all t > tAi .

In that case V i(tAi ) = 0 and thus fi(t
A
i ) = 0. Now, if fi(t) ≥ 0 on some positive-

measure subset of [0, tAi ], then for some t′ < tAi we must have fi(t
′) ≥ 0 and fi(t

′) > 0,

meaning that fi(t) > 0 for t > t′ sufficiently small. But for fi to decline back to zero

by time tAi , there must be a positive-measure set of times at which fi is both strictly

positive and has a strictly negative derivative, a contradiction. So it must be that

fi(t) < 0 a.e. on [0, tAi ], i.e. λi(t) = λ for all such times. But then firm i prospects

at the maximum rate at all times prior to tAi , meaning that µ−i(t) ≤ µi(t) for such

times, a contradiction of tAi < tA−i. We conclude that tA1 = tA2 . Let tA be this common

time.

Suppose first that tA = ∞. Then each firm i must prospect at less than full

intensity on a positive-measure set of times, meaning there exists a time t′i at which

fi(t
′
i) ≥ 0 and f ′i(t) > 0. Thus fi(t) > 0 for t > t′i sufficiently small, and by reasoning

similar to the previous paragraph fi(t) > 0 for all t > t′i. Thus λi(t) = 0 for t > t′i,

meaning firm −i is in autarky with beliefs strictly above the autarky threshold. It

therefore sets λ−i(t) = λ for t > t′i, contradicting tAi = tA = ∞. So it must be that

tA <∞.
Next, suppose that fi(t

A) > 0 for some i. Then also fi(t) > 0 for t sufficiently close

to tA, meaning λi(t) = 0 for such times. But then µ−i(t) is constant on this interval,

contradicting tA−i = tA. So fi(t
A) = 0 for each firm i. By now-familiar arguments, it

must therefore be that fi(t) < 0 for almost all t < tA, i.e. λi(t) = λ for each i and a.e.

t < tA. Therefore tA = TA. Further, fi(t
A) = 0 implies V i(tA) = 0, so λ−i(t) = 0 for

all t > tA. Thus each firm must use the threshold prospecting strategy T i = TA.

We complete the proof by ruling out mixed prospecting rules in equilibrium. This

is accomplished by the following lemma, which establishes that any equilibrium involv-

ing randomization over prospecting implies existence of a pure-strategy equilibrium

involving interior prospecting. As no pure-strategy equilibria exhibit such behavior,

no mixed-strategy equilibria exist.

Lemma D.15. Fix any equilibrium in threshold investment strategies. Then there

exists a payoff-equivalent equilibrium in pure strategies, exhibiting interior prospecting
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whenever some firm randomized over prospecting rates in the original equilibrium.

Proof. Fix an equilibrium involved randomized prospecting, and fix a firm i. After

time T ∗i , firm i’s prospecting rule does not affect firm −i’s payoffs or incentives; thus

λi may be replaced with any pure strategy maximizing i’s payoffs subsequent to time

T ∗i without disturbing the equilibrium. So consider times t < T ∗i .

Let

Ωi(t) ≡ E
[
exp

(
−
∫ t

0

λi(s) ds

)]
be the ex ante probability that firm i has obtained no signal by time t. Define a

new pure-strategy prospecting rule λ̃i by letting λ̃i(t) = − d
dt

log Ωi(t) for all times

(with the prospecting rule arbitrary at any point of non-differentiability of Ωi). By

construction, λi and λ̃i induce the same sequence of induce the same distribution of

investment times by firm i, and thus the same posterior beliefs for firm −i conditional

on observing no investment. Therefore firm−i’s incentives are unchanged by replacing

λi with λ̃i.

It remains to check that λ̃i is feasible and optimal for firm i. Note that

λ̃i(t) =
1

Ωi(t)
E
[
λi(t) exp

(
−
∫ t

0

λi(s) ds

)]
.

The second factor on the rhs is bounded above by λΩi(t) and below by zero, hence

λ̃i(t) ∈ [0, λ], ensuring feasibility. As for optimality, suppose first that at time t, the

action λi(t) is strictly optimal for firm i. Then it must be non-random, in which case

the previous expression for λ̃i(t) collapses to λ̃i(t) = λi(t). So at any times for which

randomization is not optimal for firm i, the modified prospecting rule specifies the

same prospecting intensity as the original rule. And at all other times, any prospecting

intensity is optimal, thus in particular the intensity specified by λ̃i is optimal. So λ̃i

is an optimal prospecting rule.

This argument shows that firm i’s randomized prospecting rule may be replaced

by a non-random one which is also optimal for firm i, without disturbing firm −i’s
payoffs or incentives. This procedure may be performed for both firms, yielding a

pure strategy equilibrium.

Finally, for any time t at which λi(t) is not deterministic, it must be that Pr(λi(t) >

0) > 0 and Pr(λi(t) < λ) > 0, in which case the previous expression for λ̃i im-

plies λ̃i(t) ∈ (0, λ). So randomization in the original equilibrium implies an interior
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prospecting rate in the new equilibrium.

D.6 Proof of Proposition 4

To prove the small-r result, we show that whenever r ≤ r∗, welfare under the leader-

follower equilibrium exceeds welfare in the symmetric equilibrium. Let V A(t) ≡
λ
λ+r

K(µλ(t)−πA) be the autarky payoff under beliefs µλ(t). We first show that in the

symmetric equilibrium, V i(t) = V A(t) for each i and all t ≤ TA. First note that for all

such times, µi(t) = µλ(t). Then trivially V i(TA) = V A(TA), as at time TA each firm

is in autarky with beliefs µλ(TA). So evaluate the functional F i defined in Appendix

C at V A for any time t ≤ TA. Using the identity V = λ
λ+r

K(π+ − πA), which holds

whenever r ≤ r∗, as well as the identity Ṽ i(t)− c = K(µλ(t)−πA), which holds given

that T ∗i =∞, yields F i(V A, t) = 0. Then a standard verification argument establishes

that V A(0) = V S.

Now consider the leader-follower equilibrium. Recall that when r ≤ r∗, Lemma

D.1 implies that T ∗F = 0. Hence the leader is in autarky for all times and V L = V A(0).

So consider the follower’s strategy. Suppose firm i is the follower. Note that µi(t) =

µλ(t) for all time, and that Ṽ i(t)− c > K(µλ(t)−πA) for all time given that investing

immediately is strictly dominated by waiting at all times. Hence F i(V A, t) < 0

for all time. Then as V A is a bounded function, a standard verification argument

establishes that V A is bounded strictly above by the payoff of the threshold strategy

T i = T ∗i =∞. Since V F is an upper bound on the payoff of any strategy followed by

firm i, it must be that V F > V A(0). Thus V L + V F > 2V A(0) = 2V S, as claimed.

We now prove the large-r result. Going forward, we will assume that r > r∗.

We first establish that V F > V S > V L. Write V F (t), V S(t), V L(t) for the time-t

continuation value of each firm in each equilibrium given no signal and no investment

by the other firm. Let T̂F ≡ min{T F , T ∗F} be the time at which the follower becomes

passive in the leader-follower equilibrium. The leader’s beliefs equal µλ(T̂F ) at time

T̂F , and further the leader is in autarky going forward. It follows that V L(T̂F ) =

V A(T̂F ).

Meanwhile, a firm in the symmetric equilibrium possesses posterior beliefs µλ(T̂F )

at time T̂F given that T̂F < TA (as established in Proposition 2). Further, the

autarky strategy is feasible but not optimal for that firm in the continuation after

time T̂F . This is because when r > r∗, investing following observation of investment by
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the other firm improves on the autarky strategy of ignoring the other firm’s actions

and continuing to prospect. And since T̂F < TA, each firm invests with positive

probability subsequent to time T̂F in the symmetric equilibrium. It must therefore

be that V S(T̂F ) > V A(T̂F ) > V L(T̂F ).

Next, observe that the follower could achieve the symmetric equilibrium continua-

tion value at time T̂F by following the strategy of prospecting until time TA, investing

immediately if it has obtained a signal or observed investment, and then halting all

prospecting and investment subsequent to time TA, regardless of what it sees the

other firm do. However, this strategy cannot be optimal, since the leader invests with

positive probability after time TA, and the follower’s payoff would be improved by

investing in such histories whenever it has not yet obtained a signal. It must therefore

be that V F (T̂F ) > V S(T̂F ).

To complete the argument, we show that V F (T̂F ) > V S(T̂F ) > V L(T̂F ) implies

that V F > V S > V L. Note that no firm in either equilibrium delays investment prior

to time T̂F , and posterior beliefs for all firms equal µλ(t) for all times prior to T̂F .

It follows that F i(·, t) (as defined in Appendix C) is the same for a leader, follower,

or firm in the symmetric equilibrium prior to T̂F . Then since V F (T̂F ) > V S(T̂F ) >

V L(T̂F ), a standard comparison result implies that V F > V S > V L.

To complete the proof, we perform a limiting payoff comparison as r → ∞. For

the remainder of the proof, we will make the dependence of variables on r explicit.

Note in particular that µ(r) and µ∗(r) are both functions of r, while πA is independent

of r. We begin with two auxiliary lemmas.

Lemma D.16. For sufficiently large r, max{µ∗(r), πA} < µ(r) < π0.

Further, limr→∞ µ(r) = πA.

Proof. Note that as r →∞, ∆I(µ, r) converges uniformly to −(µ+R− 1) for all µ ∈
[π−, π0], and thus µ∗(r) approaches µ, where µ solves µ

+
R−1 = 0. Since πA+R−1 > 0

and π+R − 1 > 0, it must therefore be that µ∗(r) < min{π0, πA} for large r. In

particular, µ∗(r) < π0 implies that

∆P (µ∗(r), r) =
µ∗(r)− π−
π+ − π−

λ

λ+ r
(π+R− 1)−K(µ∗(r)− πA).

As the first term approaches zero for large r while µ∗(r) < πA for large r, we must

have ∆P (µ∗(r), r) > 0, i.e. µ(r) > µ∗(r). Lemma D.6 then further implies that
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µ(r) > πA for such r. Further, for large r and µ > µ∗(r), ∆P (µ, r) converges uniformly

to−K(µ−πA), and thus µ(r) converges to πA. Since πA < π0, we therefore have µ < π0

for r sufficiently large.

Lemma D.17. limr→∞ r(T
A − T F (r)) = (π+R− 1)/(h(π+)(π++R− 1)− c).

Proof. Recall that TA = (µλ)−1(πA) while T F (r) = (µλ)−1(µ(r)). So to first order,

TA − T F (r) = − 1

µ̇λ(TA)
(µ(r)− πA) +O((µ(r)− πA)2).

For large r, µ(r) ∈ (µ∗, π0) and so µ(r) solves

µ− π−
π+ − π−

λ

λ+ r
(π+R− 1) = K(µ− πA).

The solution to this equation may be written to first order in r−1 as

µ(r) = πA +K−1
λ(πA − π−)

π+ − π−
(π+R− 1)r−1 +O(r−2).

Thus

TA − T F (r) = −K−1 λ(πA − π−)

µ̇λ(TA)(π+ − π−)
(π+R− 1)r−1 +O(r−2).

Now, using Lemma B.2 to eliminate µ̇λ(TA) yields

TA − T F (r) =
π+R− 1

K(π+ − πA)
r−1 +O(r−2) =

π+R− 1

h(π+)(π++R− 1)− c
r−1 +O(r−2).

Multiplying through by r and taking r →∞ yields the desired identity.

In light of Lemma D.16, going forward we will assume that r is sufficiently large

that T F (r) < T ∗F (r), TA. Fix a strategy profile in which both firms play the leader’s

strategy. Let νλ(t) be the associated time-t probability that a firm’s opponent has ob-

tained no signal, supposing it hasn’t invested yet. Further let πP (t) ≡ λK(µλ(t)−πA)

and πO(t) ≡ νλ(t)h(π0)(π+R − 1) be each firm’s time-t flow profits from prospect-

ing and observing investment, respectively, conditional on having obtained no sig-

nal and having observed no investment. (Note that when r > r∗, each firm opti-

mally invests immediately following observation of investment.) Finally, let δ(t) ≡
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(1−(1−e−λt)h(π0) be a firm’s probability of reaching time t without having observed

investment.

Each firm’s profits in each equilibrium may be written using this notation. Sym-

metric equilibrium profits are

V S(r) =

∫ TA

0

dt e−(r+λ)tδ(t)(πP (t) + πO(t)),

where the upper limit of integration accounts for the termination of flow profits at

time TA supposing no firm has acquired a signal or invested by that time. Meanwhile

the leader’s profits are

V L(r) =

∫ TF (r)

0

dt e−(r+λ)tδ(t) (πP (t) + πO(t)) + e−(r+λ)TF (r)δ(T F (r))
πP (T F (r))

λ+ r
,

where the final term accounts for the transition to autarky supposing no firm has

acquired a signal or invested by time T F (r). (Recall that T F (r) < T ∗F (r), so T F (r) is

the time of transition to autarky.) Finally, the follower’s profits are

V L(r) =

∫ TF (r)

0

dt e−(r+λ)tδ(t) (πP (t) + πO(t)) +

∫ ∞
TF (r)

dt e−rte−λTF (r)δ(t)πO(t),

where the final term accounts for the termination of prospecting at time T F (r).

Define ∆V (r) ≡ rerTR(r)(2V S(r)−V L(r)−V F (r)). This expression may be written

explicitly as

∆V (r) = 2

∫ TA

TF (r)

dt re−r(t−TF (r))e−λtδ(t)(πP (t) + πO(t))

−
∫ ∞
TF (r)

dt re−r(t−TF (r))e−λTF (r)δ(t)πO(t)

− r

λ+ r
e−λTF (r)δ(T F (r))πP (T F (r)).

We now take the limit r → ∞. Recall that limr→∞ T F (r) = TA and πP (TA) =

0. Thus the final term vanishes in the limit. To evaluate the integrals, make the

substitution t′ = r(t−T F (r)). As πP , πO, and δ are bounded functions, the resulting

integrands are uniformly bounded for all t′ and r, and the bounded convergence

theorem may be used to evaluate each integral in the limit. The first converges to
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2(1−exp(− limr→∞ r(T
A−T F (r))))e−λT

A
δ(TA)πO(TA) while the second converges to

−e−λTAδ(TA)πO(TA). Combining these calculations and invoking Lemma D.17 yields

lim
r→∞

∆V (r) =

(
1− 2 exp

(
− π+R− 1

h(π+)(π++R− 1)− c

))
e−λT

A

δ(TA)πO(TA).

The sign of 2V S(r) − V L(r) − V F (r) for large r must be the same as the sign of

limr→∞∆V (r). Hence it is strictly positive whenever c > c ≡ h(π+)(π++R − 1) −
(π+R − 1)/ log 2. Note that c is independent of r and c < c given that log 2 < 1, as

claimed in the proposition statement.
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